R/liger_preprocess.R
liger_preprocess.Rd
Split merged object into multiple sce objects and extract sparse matrices:
liger_preprocess(
sce,
k,
unique_id_var = "manifest",
take_gene_union = F,
remove.missing = T,
num_genes = 2000,
combine = "union",
capitalize = F,
use_cols = T,
num_cores = 1,
...
)
SingleCellExperiment object or merged objects
Inner dimension of factorization (number of factors).
the colData variable identifying unique samples. Default is "manifest".
Make a Liger object:
Whether to fill out raw.data matrices with union of genes across all datasets (filling in 0 for missing data) (requires make.sparse=T) (default FALSE).
Whether to remove cells not expressing any measured genes, and genes not expressed in any cells (if take.gene.union = T, removes only genes not expressed in any dataset) (default TRUE).
Select informative genes:
Number of genes to find for each dataset. Set to 3000 as default.
How to combine variable genes across experiments. Either "union" or "intersect". (default "union")
Capitalize gene names to match homologous genes (ie. across species) (default FALSE) Scale genes by root-mean-square across cells:
Remove cells/genes with no expression across any genes/cells:
Treat each column as a cell (default TRUE)
Number of cores used on user's machine to run function. Default is 1.
Additional arguments.
liger preprocessed object.
Other Data integration:
integrate_sce()
,
liger_reduce_dims()
,
report_integrated_sce()